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Abstract—Sugarcane is an essential crop in southwestern 

Japan, particularly in Okinawa and Kagoshima, where it sustains 

local economies and supports large-scale sugar production. 

Traditional yield prediction relies on labor-intensive field surveys 

and is increasingly challenged by a shortage of skilled labor, 

resulting in potential inaccuracies. This work proposes an 

innovative approach to sugarcane yield prediction by combining 

Long Short-Term Memory (LSTM) models with Genetic 

Algorithms (GA) to optimize model performance. Drone-based 

data collection methods are also explored, leveraging aerial 

imagery to provide additional predictive features. The proposed 

model demonstrates the effectiveness of integrating time-series 

and spatial data, offering a scalable and accurate solution for 

improving yield forecasting and supporting efficient operations in 

sugarcane production.  

Keywords—Sugar cane  y i e l d  p red ic t io n ,  3 D Map 
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I. INTRODUCTION 

Japan’s sugarcane industry occupies a significant land area, 

with a total of 23,200 hectares devoted to sugarcane cultivation. 

In Japan’s southwestern regions, sugarcane serves as a crucial 

economic pillar for local communities, contributing to 

agricultural productivity, employment, and the broader regional 

economy. Sugar mills rely heavily on accurate crop growth 

surveys to plan and regulate their operations, adjusting activities 

and resource allocations based on anticipated yields. Therefore, 

large discrepancies between predicted and actual yields can lead 

to severe disruptions in mill operations, resulting in economic 

losses and resource inefficiencies. 

Conducting accurate yield forecasts requires substantial 

labor resources, typically involving field visits and 

measurements by experienced surveyors. However, as the 

availability of skilled experts decreases, concerns are growing 

regarding the accuracy of current forecasting methods. This 

highlights the necessity for advanced technologies that can 

provide efficient, scalable, and high-precision data collection, 

particularly through drone-based monitoring systems [1]-[2]. 

Drones equipped with multispectral and RGB cameras offer new 

possibilities for collecting vast amounts of field data quickly and 

autonomously, capturing information about crop health, growth 

patterns, and other relevant features. 

Several AI models for yield prediction are proposed [3] - [5]. 

Given the time-dependent nature of crop growth and weather 

conditions, yield prediction is well-suited to recurrent neural 

network (RNN)--based learning methods. RNN models, 

especially the Long Short-Term Memory (LSTM) model, are 

effective in capturing complex temporal relationships by 

accommodating both short-term and long-term dependencies 

within data [6] - [7]. The LSTM model has demonstrated 

superior accuracy over traditional machine learning approaches 

in yield prediction tasks, accounting for nonlinear crop growth 

trends that arise due to environmental fluctuations. 

This work uses multimodal data to propose a robust 

sugarcane yield prediction model based on LSTM and Genetic 

Algorithms (GA). While the LSTM model processes temporal 

data, the GA is utilized to optimize key model parameters, such 

as learning rates and hidden layer configurations, further 

refining the model’s predictive capacity. Additionally, the work 

explores the integration of drone-captured imagery, analyzing 

its utility as an input feature to improve model performance. 

This approach aims to establish an advanced, data-driven 

framework supporting sustainable sugarcane farming by 

improving yield accuracy and operational efficiency. 

II. DEVELOPED DRONE 

A. Hardware 

The hardware setup for the drone system is built around a 

modular and highly adaptable F450 frame, selected for its 

durability and compatibility with various sensors and payloads 

(Fig. 1). The Pixhawk 6C flight controller is employed for its 

precise aerial control capabilities, allowing for highly stable 

flight even under variable environmental conditions. The 

controller integrates multiple sensors, providing advanced flight 

modes, autonomous navigation, and flight stability, all essential 

for reliable data collection in field environments. A Raspberry 

Pi has been incorporated to handle onboard computations, 

enabling real-time processing and storage of data. Other 

peripheral devices can be also integrated. 
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Accurate geolocation is critical for mapping and data 

correlation, and this is achieved with a GNSS (Global 

Navigation Satellite System) module, which provides precise 

positional data for each captured image. This level of accuracy 

ensures that every image can be mapped accurately to specific 

areas within the field, facilitating spatial analyses and allowing 

for repeatability in longitudinal studies. The power requirements 

for such extended field operations are met by a high-capacity 

LiPo battery, selected for its energy efficiency and ability to 

sustain prolonged flight durations. 

For data acquisition, the drone is equipped with a dual-

camera setup. An RGB camera (DJI Action 2 Power Combo) 

captures high-resolution visible-spectrum images, providing 

detailed color data that can aid in identifying crop structure, 

canopy cover, and other visual characteristics of the crop. 

Additionally, a Survey3W OCN multispectral camera captures 

spectral bands beyond the visible range, essential for assessing 

plant health indicators such as chlorophyll content and stress 

levels. This multispectral data allows the drone to capture 

valuable insights into the physiological condition of the 

sugarcane, which can be critical for yield prediction and disease 

detection. A mobile battery has been integrated to power the 

additional components. For regulatory compliance and safety, 

an AERO-D-X1 remote ID system has been incorporated, 

allowing for real-time drone tracking and identification.  

 
(a) Top view             

 
 (b) Side view 

Fig. 1 Robot hardware 

B. Software 

To achieve efficient and comprehensive data collection, an 

advanced autonomous flight system was implemented for the 

drone. This system enables full coverage of the designated 

agricultural fields by automating the aerial photography process. 

The flight altitude was set at 20 meters, balancing image 

resolution with coverage area to capture high-quality imagery 

while maximizing the area surveyed in each pass. 

The optimal shooting locations are determined considering 

the camera's viewing angle, overlap requirements, and the 

topography of the target area. This method minimizes data gaps. 

With these factors, an optimal flight path was generated that 

linked each calculated shooting position in a continuous and 

efficient sequence. Additionally, it has a return-to-home feature, 

programmed to activate in case of low battery levels, 

connectivity loss, or emergencies, protecting both the drone and 

data. 

The drone is configured to trigger the camera at preset 

intervals along the flight path, to stream the captured data. This 

synchronization of movement and image capture ensures 

consistent data spacing which is critical for post-processing 

tasks, such as developing 3D maps from captured images. 

III. YIELD PREDICTION MODEL 

The LSTM model, a recurrent neural network architecture well-

suited for time-series data, is implemented using a many-to-one 

configuration, specifically chosen to predict final sugarcane 

yield based on a sequence of inputs over time (Fig. 2). This 

many-to-one structure is highly effective in yield prediction 

tasks because it allows the model to integrate into a single 

vector multimodal chronological series of data points, such as 

environmental conditions, plant growth, and meteorological 

factors. The LSTM’s recurrent structure captures dependencies 

across time steps, a critical feature given that sugarcane growth 

is influenced by cumulative environmental conditions and 

seasonal variations.  

To improve the model’s predictive accuracy and efficiency, a 

Genetic Algorithm (GA) is integrated into the model to perform 

automated feature selection and optimization of 

hyperparameters. GA searches for optimal solutions by 

iteratively evolving a population of candidate configurations. In 

this work, GA is applied to identify the most relevant input 

variables, such as temperature, rainfall, sunlight, plant growth 

stage, and soil quality, enabling the model to focus only on data 

that significantly impacts sugar cane yield. By excluding less 

influential variables, GA helps prevent overfitting and 

improves the model’s generalization capability. 

 

(1) Many-to-one     (2) LSTM Block 

Fig. 2 LSTM 

Beyond feature selection, GA also plays a crucial role in 

optimizing the LSTM model’s hyperparameters, including the 

number of hidden layers, the size of each layer, the learning rate, 

and dropout rates. These hyperparameters influence the 

model’s learning dynamics and the ability to capture complex, 

nonlinear relationships within the data. For instance, selecting 

the appropriate number of hidden layers and units allows the 

model to balance computational efficiency with the capacity to 



learn intricate patterns in the input data. The learning rate, 

another critical hyperparameter, determines the step size during 

model training; an optimized learning rate accelerates 

convergence while avoiding oscillations or divergence in the 

loss function. Dropout rates are also tuned to mitigate 

overfitting, ensuring the model generalizes well to unseen data. 

GA initializes a population of LSTM configurations, each with 

random values of hyperparameters. Over successive 

generations, GA evaluates the performance of each 

configuration using a fitness function. In our implementation, 

the fitness is the model’s prediction accuracy measured as mean 

square error (MSE) of the validation dataset. The best-

performing configurations are selected for crossover and 

mutation, creating a new generation of configurations that 

inherit the best traits of their predecessors while introducing 

variability. This evolutionary process iterates until convergence 

or until a pre-specified level of prediction accuracy is reached. 

IV.  RESULTS 

A. DSM Creation and Comparison with Measured Values 

To validate the accuracy of the Digital Surface Model (DSM), 

orthophoto measurements generated by Open Drone Map were 

cross-referenced with actual measurements from four randomly 

selected sugarcane fields located in Tokunoshima island (Fig. 3). 

 
Fig. 3. Sugar cane fields. 

 

The orthophotos provided a high-resolution, top-down view of 

each field, corrected for perspective distortions and topographic 

variations. This allows for precise distance measurements and 

spatial mapping within the field. Comparisons between DSM-

derived heights and manually measured pseudostem lengths 

were conducted, as these heights serve as a proxy for sugarcane 

growth and health. 

 
Fig. 4. Segments of divided model.  

 

To ensure a robust analysis, the DSM was divided into segments 

aligned with the survey plots, where crop measurements were 

already recorded (Fig. 4). Within each plot, the work focused on 

the upper 20% of height data points, calculating their average to 

generate a representative crop height while minimizing the 

impact of outliers (Fig. 5). This approach allowed for a more 

accurate reflection of sugarcane height, reducing bias from areas 

with irregular vegetation or lower growth, and helping to isolate 

data that most accurately correlated with the pseudostem length 

data from ground surveys. This correlation was quantified using 

calculated coefficients, which provided insights into the degree 

of alignment between DSM-derived crop height data and field 

measurements, thus evaluating DSM’s effectiveness as a yield 

predictor. Strong correlations between these data sets indicated 

that DSM height data could be a reliable, non-invasive predictor 

for sugarcane growth stages and overall yield potential. 

 
Fig. 5. Calculated data points.  

 



 
 

Fig. 6. 3D map generated and sugar cane height prediction 

 

 

Fig. 7. Pseudostem length and DSM-derived height  

 

B. Data Selection and Accuracy Comparison for Yield 

Prediction 

The Kagoshima Prefectural Agriculture Development Center 

conducted comprehensive growth surveys from 2016 to 2023, 

collecting data on variables crucial for sugarcane yield analysis, 

such as pseudostem length, stem count, and sugarcane variety, 

with measurements taken consistently from July to October. 

This rich dataset provided an in-depth view of growth dynamics 

across different seasons and environmental conditions. 

Complementing these field measurements, meteorological data 

from the Japan Meteorological Agency—including average 

temperature, total rainfall, and daily sunshine hours—were 

integrated into the dataset as additional predictive factors, given 

their direct impact on crop development. 

Each of these variables was evaluated as a potential input for 

the yield prediction model, with the target variable set as stem 

weight—a key indicator of sugarcane yield. However, not all 

variables contribute equally to prediction accuracy. By iterating 

through combinations of input variables, the GA identified 

which factors most strongly influenced the model’s accuracy, 

allowing the model to prioritize high-impact variables, such as 

pseudostem length and temperature, while discarding less 

influential data, such as less variable weather factors. 

Once the optimal set of variables was selected, the LSTM 

model was trained on this refined dataset to maximize 

predictive power while minimizing overfitting. This careful 

curation of inputs improved the model’s performance, as 

extraneous data could introduce noise and reduce prediction 

accuracy.  

C. DSM Accuracy 

The accuracy of the Digital Surface Model (DSM) was 

evaluated through comparisons between the DSM-derived 

measurements and actual field data, including point clouds, 

orthophotos, and DSM images (Fig. 6). To verify spatial 

precision, the orthophoto-based measurements were cross-

referenced with field-obtained distances, which revealed minor 

discrepancies, with the maximum error reaching 1.8 meters. 

While this deviation was within acceptable limits for the scale 

of sugarcane fields, it underscored the importance of refining 

mapping accuracy for even better data fidelity in future 

applications. 

The DSM’s ability to reflect crop height accurately was 

quantified by calculating the correlation coefficient between 

DSM-derived heights and pseudostem length measurements 

obtained from manual surveys. The observed correlation 

coefficient of 0.704 demonstrated a strong positive relationship, 

indicating that DSM-derived height data closely approximated 

actual crop growth and could serve as a reliable predictor for 

sugarcane yield. This positive correlation validated the DSM as 

a valuable input for the yield prediction model, providing a non-

invasive alternative to traditional crop measurement methods. 

By capturing crop height with high precision, the DSM also 

enabled a better understanding of growth patterns across 

different regions within the field, allowing for targeted analysis 

and yield management strategies. 

In addition to height validation, the DSM provided spatial 

insights into crop density and structural uniformity, which are 

crucial for yield estimation. Differences in DSM-derived crop 

height across the field highlighted areas of inconsistent growth, 

likely due to varying soil conditions, water availability, or 

sunlight exposure. These spatial variations underscored the 

DSM’s utility in identifying zones that may require intervention 

to maximize yield potential, thus improving precision 

agriculture applications in sugarcane fields. 

 

D. GA-Optimized Data Selection and Yield Prediction Model 

Accuracy 

In optimizing the LSTM yield prediction model, the Genetic 

Algorithm (GA) played a pivotal role in selecting the most 

predictive variables and refining model configurations. 

Through multiple iterations, GA identified an optimal hidden 

layer configuration of 64 nodes, with a learning rate of 0.0001, 

which enabled the model to effectively capture the complex, 

nonlinear relationships within the dataset. This setup facilitated 

efficient learning while avoiding overfitting, which is critical 

for generalizing the model to diverse field conditions and 

seasonal changes. 

The GA-driven analysis revealed that excluding stem count as 

an input variable improved the model's accuracy. Although 

initially considered important, stem count showed a weaker 

correlation with final yield compared to other metrics, such as 

pseudostem length. Pseudostem length proved to be a more 

reliable indicator of growth and biomass, likely due to its closer 

relationship with sugarcane height and overall structural mass. 

By eliminating less predictive variables, the model was 

streamlined, focusing on the data inputs that held the strongest 



predictive power, which minimized noise and improved model 

robustness. 

Among the models tested, the GA-optimized LSTM model 

consistently outperformed other configurations, achieving a 

prediction error rate of 7.6%. This low error rate indicated a 

high level of predictive accuracy, especially given the 

complexity of factors affecting crop yield. The significant 

accuracy improvement provided by GA-optimized input 

selection and hyperparameter tuning demonstrates the efficacy 

of combining LSTM with GA for yield prediction tasks. This 

hybrid approach allows the model to adapt to diverse and 

evolving environmental factors, providing farmers with a 

powerful, data-driven tool for anticipating yield outcomes. 

Additionally, this model has potential applications for broader 

agronomic studies, where similar yield forecasting methods 

could be applied to other crop types, further demonstrating the 

adaptability and robustness of the GA-optimized LSTM 

architecture. 

 

V.  CONCLUSIONS 

This work developed a sugar cane yield prediction model using 

a combination of LSTM and GA, aimed at assisting in the 

prediction of sugar cane yield. The GA-optimized model 

achieved a prediction error rate of 7.6%, demonstrating the 

potential of LSTM+GA for accurate yield prediction. The 

Digital Surface Model (DSM) derived from drone-captured 

images strongly correlated with pseudostem length, supporting 

its use as a valuable input for the yield prediction model. Future 

research may explore alternative data extraction methods from 

DSM, including advanced statistical techniques and 

Convolutional Neural Networks (CNNs) to refine model 

performance and generalizability further. 
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